Controlling Front-End Electronics Boards Using Commercial Solutions
نویسندگان
چکیده
LHCb is a dedicated B-physics experiment under construction at CERN’s large hadron collider (LHC) accelerator. This paper will describe the novel approach LHCb is taking toward controlling and monitoring of electronics boards. Instead of using the bus in a crate to exercise control over the boards, we use credit-card sized personal computers (CCPCs) connected via Ethernet to cheap control PCs. The CCPCs will provide a simple parallel, I2C, and JTAG buses toward the electronics board. Each board will be equipped with a CCPC and, hence, will be completely independently controlled. The advantages of this scheme versus the traditional bus-based scheme will be described. Also, the integration of the controls of the electronics boards into a commercial supervisory control and data acquisition (SCADA) system will be shown.
منابع مشابه
Installation and commissioning of the ATLAS
The cryostats of the ATLAS LAr calorimeter system are installed in the ATLAS cavern since several years. Following this, an effort to install and commission the front-end and back-end read-out electronics as well as the timing, trigger and control electronics (infrastructure, crates, and boards) has been ongoing and is finished now, in time for the cavern closure. Following cautious procedures ...
متن کاملTest of ATLAS RPCs Front-End electronics
The Front-End Electronics performing the ATLAS RPCs readout is a full custom 8 channels GaAs circuit, which integrates in a single die both the analog and digital signal processing. The die is bonded on the Front-End board which is completely closed inside the detector Faraday cage. About 50 000 FE boards are foreseen for the experiment. The complete functionality of the FE boards will be certi...
متن کاملThe Cathode Strip Chamber Data Acquisition System for CMS
The Cathode Strip Chamber (CSC) [1] Data Acquisition (DAQ) system for the CMS [2] experiment at the LHC [3] will be described. The CSC system is large, consisting of 218K cathode channels and 183K anode channels. This leads to a substantial data rate of ~1.5GByte/s at LHC design luminosity (10cms) and the CMS first level trigger (L1A) rate of 100KHz. The DAQ system consists of three parts. The ...
متن کاملMulti-objective Reconfiguration of Distribution Network Using a Heuristic Modified Ant Colony Optimization Algorithm
In this paper, a multi-objective reconfiguration problem has been solved simultaneously by a modified ant colony optimization algorithm. Two objective functions, real power loss and energy not supplied index (ENS), were utilized. Multi-objective modified ant colony optimization algorithm has been generated by adding non-dominated sorting technique and changing the pheromone updating rule of ori...
متن کاملLow-noise Design Issues for Analog Front-end Electronics in 130 nm and 90 nm CMOS Technologies
Deep sub-micron CMOS technologies provide wellestablished solutions to the implementation of low-noise front-end electronics in various detector applications. The IC designers’ effort is presently shifting to 130 nm CMOS technologies, or even to the next technology node, to implement readout integrated circuits for silicon strip and pixel detectors, in view of future HEP applications. In this w...
متن کامل